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Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments
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You learn a model 
➔ can predict cluster assignments 

for points not seen in training

Easily works with different distances 
(not just Euclidean)

Great for problems that don’t need 
to predict clusters for future points

The most popular models effectively 
assume Euclidean distance…

Different split/merge criteria lead to 
clusters that look specific ways 

(e.g., chaining, crowding)



Example: Clustering on U.S. Counties

No need to predict which cluster new counties should 
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston



Clustering
Generative models Hierarchical clustering

Top-down: Start with everything in 1 
cluster and decide on how to 

recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters3. Use fitted model to 

determine cluster assignments

Many more methods we didn’t cover
• sklearn has a whole bunch more (not close to exhaustive)
• Also: remember the recommendation system setup?

• Co-clustering is the problem of clustering both users and 
items at the same time (sklearn has a few methods)



How to Choose a Clustering Method?
Some questions to think about:

• Does Euclidean distance make sense for your application, 
or do you use some custom distance function?

• Do you care about figuring out which cluster new points 
belong to?

• After you run the clustering algorithm, look at what data 
points ended up in the same cluster and make visualizations 
(e.g., histogram of various feature values)
• Do the clusters seem interpretable to you?
• Compare the cluster centers: do two clusters seem a bit 

too close and should be merged?
• Can you come up with some heuristic score function to say 

how good a cluster assignment is?

In general: not easy!

• What features to even cluster on?



Clustering Last Remarks
• It’s possible that several clustering methods give similar 

results (which is great! — it means that there are some 
reasonably “stable” clusters in your data)
• Example: tons of clustering methods can figure out from 

senate voting data who Democrats and Republicans are 
(of course, without knowing each senator’s political party)

• Ultimately, you have to decide on which clustering method 
and number of clusters make sense for your data
• Do not just blindly rely on numerical metrics  

(e.g., CH index)
• Interpret the clustering results in the context of the 

application you are looking at
If you can set up a prediction task, then you can use the 

prediction task to guide the clustering



Is Clustering Structure Enough?
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What if these two users shared a Netflix account 
(and used the same user profile)?



Is Clustering Structure Enough?
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In general: How do we handle when a user 
appears to belong to multiple clusters?

What if these two users shared a Netflix account 
(and used the same user profile)?



Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)



Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

In all of these examples: 
• Each data point (a feature vector) is part of 

multiple topics 
• Each topic corresponds to specific feature 

values in the feature vector likely appearing



Latent Dirichlet Allocation (LDA)
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: what the k topics are (details on this shortly)

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i



LDA Example
Alice’s text Bob’s text

weather
food
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Each word in Alice’s text is generated by:
1. Flip 2-sided coin for Alice
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food
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Each word in doc. i is generated by:
1. Flip 2-sided coin for doc. i
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

“Learning the topics” 
means figuring out 
these 4-sided coin 

probabilities



LDA

Topic 1
Word 1
Word 2

…
Word d

Topic 2 Topic k

…

Doc. 1
Topic 1
Topic 2

…
Topic k

Doc. 2 Doc. n

…

LDA models each word in document i to be generated as:
• Randomly choose a topic Z (use topic distribution for doc i)
• Randomly choose a word (use word distribution for topic Z)

Goal: Learn these distributions



LDA
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: the k topics’ distribution of words

2
1
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…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i



LDA

Demo



How to Choose Number of Topics k?

Coherence (within cluster/topic variability):

Inter-topic similarity (between cluster/topic variability):

choose something small like 0.01

For a specific topic, look at the m most probable words (“top words”)

Count # top words that do not appear in 
any of the other topics’ m top words

Bayesian nonparametric variant of LDA:  
Hierarchical Dirichlet Process (HDP)

(similar to how we went from GMM to DP-GMM)

Something like CH index is also possible:

(number of “unique words”)

∑

top words v,w
that are not the same

log
(# documents with at least one appearance ofv and w) + ε

# documents with at least one appearance ofw

Can average 
each of these 

across the 
topics



Topic Modeling

• There are actually many topic models, not just LDA & HDP

• Dynamic topic models: tracks how topics change over time

• This sort of idea could be used to figure out how user 
tastes change over time in a recommendation system

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Could try to see if there are existing patterns for how 
certain topics become really popular



What if we have labels?



Example: MNIST handwritten digits have known labels



If the labels are known…



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate 
cluster means, covariances



Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the 
k clusters

Step 3: Update cluster means and covariances carefully 
accounting for probabilities of each point belonging to each of the 
clusters

Repeat until convergence: 

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence



And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate 
cluster means, covariances



What should the label of 
this new point be?

Whichever cluster has 
higher probability!



(a procedure that given a new data 
point tells us what “class” it belongs to)

What should the label of 
this new point be?

Decision boundary

We just created a classifier

Whichever cluster has 
higher probability!

This classifier we’ve created assumes a 
generative model



You’ve seen generative 
models before for prediction

Linear regression!



x

y Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)



x

y

For specific value of x, 
assume y drawn from 
Gaussian with mean 
mx+b, standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)



Predictive Data Analysis

Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue) 
➔ prediction method is called a classifier

• y is continuous (such as a real number) 
➔ prediction method is called a regressor


