
Clustering Part IV:
summary, topic modeling with

Latent Dirichlet Allocation (LDA)

George Chen

CMU 95-865 Spring 2018

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Going from Similarities to Clusters
Generative models Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to

recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters3. Use fitted model to

determine cluster assignments

You learn a model 
➔ can predict cluster assignments

for points not seen in training

Easily works with different distances
(not just Euclidean)

Great for problems that don’t need
to predict clusters for future points

The most popular models effectively
assume Euclidean distance…

Different split/merge criteria lead to
clusters that look specific ways 

(e.g., chaining, crowding)

Example: Clustering on U.S. Counties

No need to predict which cluster new counties should
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston

Clustering
Generative models Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to

recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters3. Use fitted model to

determine cluster assignments

Many more methods we didn’t cover
• sklearn has a whole bunch more (not close to exhaustive)
• Also: remember the recommendation system setup?

• Co-clustering is the problem of clustering both users and
items at the same time (sklearn has a few methods)

How to Choose a Clustering Method?
Some questions to think about:

• Does Euclidean distance make sense for your application,
or do you use some custom distance function?

• Do you care about figuring out which cluster new points
belong to?

• After you run the clustering algorithm, look at what data
points ended up in the same cluster and make visualizations
(e.g., histogram of various feature values)
• Do the clusters seem interpretable to you?
• Compare the cluster centers: do two clusters seem a bit

too close and should be merged?
• Can you come up with some heuristic score function to say

how good a cluster assignment is?

In general: not easy!

• What features to even cluster on?

Clustering Last Remarks
• It’s possible that several clustering methods give similar

results (which is great! — it means that there are some
reasonably “stable” clusters in your data)
• Example: tons of clustering methods can figure out from

senate voting data who Democrats and Republicans are
(of course, without knowing each senator’s political party)

• Ultimately, you have to decide on which clustering method
and number of clusters make sense for your data
• Do not just blindly rely on numerical metrics  

(e.g., CH index)
• Interpret the clustering results in the context of the

application you are looking at
If you can set up a prediction task, then you can use the

prediction task to guide the clustering

Is Clustering Structure Enough?

1

2User
clusters

k

1 2 3 4 5
Items

m

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

What if these two users shared a Netflix account
(and used the same user profile)?

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

In general: How do we handle when a user
appears to belong to multiple clusters?

What if these two users shared a Netflix account
(and used the same user profile)?

Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

In all of these examples:
• Each data point (a feature vector) is part of

multiple topics
• Each topic corresponds to specific feature

values in the feature vector likely appearing

Latent Dirichlet Allocation (LDA)
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: what the k topics are (details on this shortly)

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in Alice’s text is generated by:
1. Flip 2-sided coin for Alice
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in Bob’s text is generated by:
1. Flip 2-sided coin for Bob
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in doc. i is generated by:
1. Flip 2-sided coin for doc. i
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

“Learning the topics”
means figuring out
these 4-sided coin

probabilities

LDA

Topic 1
Word 1
Word 2

…
Word d

Topic 2 Topic k

…

Doc. 1
Topic 1
Topic 2

…
Topic k

Doc. 2 Doc. n

…

LDA models each word in document i to be generated as:
• Randomly choose a topic Z (use topic distribution for doc i)
• Randomly choose a word (use word distribution for topic Z)

Goal: Learn these distributions

LDA
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: the k topics’ distribution of words

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

LDA

Demo

How to Choose Number of Topics k?

Coherence (within cluster/topic variability):

Inter-topic similarity (between cluster/topic variability):

choose something small like 0.01

For a specific topic, look at the m most probable words (“top words”)

Count # top words that do not appear in
any of the other topics’ m top words

Bayesian nonparametric variant of LDA:  
Hierarchical Dirichlet Process (HDP)

(similar to how we went from GMM to DP-GMM)

Something like CH index is also possible:

(number of “unique words”)

∑

top words v,w
that are not the same

log
(# documents with at least one appearance ofv and w) + ε

documents with at least one appearance ofw

Can average
each of these

across the
topics

Topic Modeling

• There are actually many topic models, not just LDA & HDP

• Dynamic topic models: tracks how topics change over time

• This sort of idea could be used to figure out how user
tastes change over time in a recommendation system

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Could try to see if there are existing patterns for how
certain topics become really popular

What if we have labels?

Example: MNIST handwritten digits have known labels

If the labels are known…

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate
cluster means, covariances

Flashback: Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the
k clusters

Step 3: Update cluster means and covariances carefully
accounting for probabilities of each point belonging to each of the
clusters

Repeat until convergence:

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate
cluster means, covariances

What should the label of
this new point be?

Whichever cluster has
higher probability!

(a procedure that given a new data
point tells us what “class” it belongs to)

What should the label of
this new point be?

Decision boundary

We just created a classifier

Whichever cluster has
higher probability!

This classifier we’ve created assumes a
generative model

You’ve seen generative
models before for prediction

Linear regression!

x

y Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)

x

y

For specific value of x,
assume y drawn from
Gaussian with mean
mx+b, standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector 
(1D in this case)

Label  
(1D in this case)

Predictive Data Analysis

Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue) 
➔ prediction method is called a classifier

• y is continuous (such as a real number) 
➔ prediction method is called a regressor

